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The dynamic scaling behavior of a growing self-affine fractal interface is examined in a simple paper-towel-
wetting experiment. A sheet of plain white paper towel is wetted with red food dye solution, and the evolution
of the interface is photographed with a 35-mm camera as a function of time. Each snapshot is scanned and
digitized to obtain the interface heighth(x,t) as a function of time and position. From these the interface width
w(L,t) is determined as a function of timet and system sizeL. It is found that the interface width scales with
system sizeL asw(L,t);La with a50.6760.04 and scales with time asw(L,t);tb with b50.2460.02. It is
also found that average height of the interface scales with time as^h&;td with d50.3360.02. These results are
assessed in comparison with the predictions of theoretical models and the results of other relevant experiments.
@S1063-651X~96!11907-3#

PACS number~s!: 47.55.Mh, 68.35.Fx

I. INTRODUCTION

Ever since the pioneering work of Mandelbrot@1# in 1982
on the fractal geometry of nature, much progress has been
made in the field of fractal surfaces@2,3#. Much of the theo-
retical work has been directed toward an understanding of
the dynamic scaling behavior of a growing interfacial sur-
face. The dynamic scaling approach to the description of a
growing interfacial surface is based on the anisotropic scal-
ing invariance of self-affine fractals@1#, and was initiated by
Family @4,5#. Dynamic scaling behavior has been studied in a
variety of theoretical models that include discrete particle,
computer simulation models@4–10#, analytical continuum
models @11–14#, and models that take into account the
quenched disorder@15–18#. However our understanding of
the dynamic aspect of a growing interfacial problem, has not
been reinforced by extensive experimental studies. Only a
handful of experimental investigations@15,16,19–24# have
been reported on the subject at this point in time, and the
experimental results that have been reported are not entirely
consistent with the predictions of theoretical studies. For ex-
ample, the Eden@9# model was originally proposed as a
model of cell growth in biological systems, and yet in a
bacterial growth experiment Vicsek, Cserzo, and Horvath
@19# found the roughness exponenta50.78, a value much
higher than that ofa50.5 expected from the Eden model. In
a paper-wetting experiment Barabasi and co-workers@15,16#
found a50.63, which is higher than the value of 0.5 ex-
pected from most of the conventional theoretical studies
@7–14# ~see Table I!. To account for this anomalous rough-
ening indicated by high value ofa, investigators@15–17#
took into account the quenched noise generated by the dis-
order in the medium, but they made no experimental study of
the dynamic aspect of the growing interface to check the
theoretical predictions of the model. In another paper-
wetting experiment Family, Chan, and Amar@20# obtained
0.62<a<0.78, higher than the value of 0.5 expected from
conventional theories@7–14#. In a paper-burning experiment

by Zhanget al. @21#, as well as in a paper-rupturing experi-
ment by Kertesz, Horvath, and Weber@22# the roughness
exponents were found to be much higher than the value pre-
dicted by conventional theoretical models@7–14#. As far as
it is known to the authors, only a few experimental studies
have been reported on thedynamicscaling behavior of grow-
ing self-affine fractal interfaces@20,23,24#. Furthermore, the
agreement among experiments of similar nature is far from
complete~see, for instance, p. 127, Ref.@2#!. It is not diffi-
cult to see that additional experimental studies can enhance
our understanding of dynamics of growing interfaces~see
also pp. 3 and 449, Ref.@3#!. This paper reports on an ex-
perimental study of dynamic scaling behavior observed in a
simple paper-towel-wetting experiment. In particular, we re-
port findings of scaling exponents, and incidentally a method
of determining the growth exponent using an Excel spread-
sheet.

In this paper we consider a (d21)-dimensional surface
that is flat at timet50. The surface grows in time, and, as it
grows, it roughens as a result of disorder in the medium
generated by a random distribution of pore sizes as well as a
random variation in the density of the medium, through or
over which a fluid flows. We concentrate on a section of the
surface having a sizeL perpendicular to the growth direc-
tion. We assume that the surface height can be described by
a single valued functionh(x,t) in d52 dimensions. We will
neglect overhangs, and in case of overhangs,h(x,t) will re-
fer to the highest point atx. The average height of the inter-
face over the lengthL at a given timet is defined by

^h~L,t !&5L21( h~x,t !, ~1!

where the summation extends overx51,2,...,L. The average
width of the interface at timet over the lengthL, w(L,t), is
defined by the root mean square value of the height fluctua-
tions,

w~L,t !5@^h2&2^h&2#1/2, ~2!
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in which ^h2& is defined in a similar manner as^h& is defined
in Eq. ~1!. Initially, the surface width grows with time be-
cause of the buildup of random fluctuations in the surface
heights. The width of the surface is a measure of transverse
correlation in the direction of growth. In the absence of any
characteristic time or length scale, the functionw(L,t) is
scale invariant. Therefore,w(L,t) is a homogeneous func-
tion of two variables, which can be reduced to a function of
a single variable@25#,

w~L,t !;La f ~ t/Lz!, ~3!

where the dynamic exponentz is defined byz5a/b. For
t!Lz, Eq. ~3! reduces to

w~L,t !;tb, ~4!

and, fort@Lz, Eq. ~3! simplifies to

w~L,t !;La. ~5!

Thus the average widthw(L,t) scales with time, and the
exponentb describes the growth of the width along the
growth direction. As the interface evolves in time, the wave-
length of the spatial fluctuations and the length over which
the fluctuations are correlated also grow with time. The
lengthL is the maximum spatial extent to which the corre-
lations can grow ind21 dimensions along the interface. The
saturation value of the width in the limit of a long time,
w(L), is expected to have a power law dependence on the
lengthL as given by Eq.~5!. In the steady state the interface
is a self-affine fractal, and its roughness is quantified by the
exponenta. For this reason the exponenta is referred to as
the roughness exponent. A great deal of studies related to the
dynamics of rough interfaces has been directed toward ob-
taining the exponentsa andb in various theoretical models.

These models are either in discrete particle, computer simu-
lation models@4–10,15–17# or in analytical continuum mod-
els @11–14,18#, and their results are summarized in Table I
along with available experimental results for quick reference
and comparison.

II. EXPERIMENT

Figure 1 shows the experimental arrangement. A sheet of
white paper towel, Scott brand, 2403280 mm2, is placed
over a piece of plate glass held at an angleu to the horizon-
tal, and at timet50 the shorter edge of the paper is im-
mersed about 1 cm into the aqueous solution of red food dye.
The evolution of the interface is photographed with a 35-mm
camera placed overhead. The shutter was operated manually,
and the time was recorded on a digital clock placed nearby.
Initially, the water front and the dye front emerged together,
but after 10 s or so the water front moved ahead of the dye
front. This may be due to the fact that organic dye molecules
are larger than the water molecules. In about 30 s the water

TABLE I. Scaling exponentsa, b, andd from various theoretical models and experiments.

a b d
THEORETICAL

Random deposition@4–6# 1
2

RD w/ surface diffusion@7# 1
2

1
4

Ballistic deposition@4,8# 1
2

1
3

Eden model@9# 1
2

1
3

Restricted solid on solid@10# 1
2

1
3

Langevin Eq.~EW! @11,12# 1
2

1
4

Generalized LE~KPZ! @13,14# 1
2

1
3

DPD simulation, pinned@15–17# 0.6360.02
DPD simulation moving@15–17# 0.7060.05 0.7060.05 0.7060.05

EXPERIMENTAL

Paper wetting, pinned@15,16# 0.6360.04
Bacterial colony@19# 0.7860.07
Paper wetting@20# 0.62–0.78 0.29–0.40 0.72–0.74
Paper burning@21# 0.7160.05
Paper rupturing@22# 0.63–0.72
Forced fluid flow@23# 0.81 0.65
Paper wetting@24# 0.5660.03
Paper wetting~present! 0.6760.04 0.2460.02 0.3360.02

FIG. 1. Experimental arrangement. A sheet of white paper towel
is placed over a piece of plate glass held at an angleu to the
horizontal. The reservoir holds an aqueous solution of red food dye.
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front led the dye front as much as 0.5 cm, and subsequently
the separation gap grew to about 1.5 cm. Because the dye
front produced a greater contrast and variation than the water
front, we decided to follow the dye front.

To begin with the paper was held horizontally~u50°!, but
the roughness of the interface appeared to grow without lev-
eling off. When the paper was held vertically~u590°! with
the bottom edge immersed, the roughness appeared to grow
for a while and then quickly decrease. When the paper was
held at 60°, the roughness of the interface grew for a while
and, after reaching a maximum, began to decrease slowly.
The results presented in this paper are those foru560°.

The evolution of interface was observed and photo-
graphed as a function of time at 10 different times in the
interval 0 and 3602 s. Each snapshot, 436-in color print, was
scanned with a Cannon Color Image Scanner IX-4015 with
4003800 dpi2 resolution. Even though the picture was in
color, it was scanned in black and white to increase the con-
trast and to facilitate subsequent digitizing. Each image,
scanned in TIFF format, was converted to PCX format be-
fore it was digitized using Un-Scan-It software. Using this
software, it was possible to digitize the horizontal length of
the paper towel~240 mm! into 2400 points or ten points per
mm. Henceforth,L52000, for example, implies an actual
physical length of 200 mm.

III. RESULTS AND DISCUSSION

For each given value of timet ~or each snapshot! the
interface heighth(x,t) is obtained forx51,2, . . .,2400, the
height being measured in units of mm. The average height
^h& as defined by Eq.~1! is determined as a function of time
for the maximum system sizeL52400. In Fig. 2, log10̂ h& is
plotted as function of log10t, and the slope of the linear curve
was determined to be 0.3360.02; therefore the average
height scales with time aŝh&;td, with d50.3360.02. Our
value of d is about the half the value obtained by Family,
Chan, and Amar@20#, 0.72<d<0.74, in a similar experiment
using different papers. Barabasiet al. @15# obtainedd50.70
60.05 in directed percolation depinning~DPD! simulation.

These values are much higher than the theoretically expected
value of 0.5, while our value is lower than the theoretically
expected value@26#. The difference between ours and that of
Ref. @20# may be due to the different nature of the papers
used.

For each given timet the interface widthw(L,t) as de-
fined by Eq.~2! is obtained as the average of 2400L values
of w(L,t) evaluated over all possible correlated intervals:
[x,x1L] for x51,2, . . .,2400 and for selected values of
L510, 20, 30, 40, 60, 100, 200, 300, 400, 500, 700, 1000,
1300, 1600, 1800, 2000, and 2200. For largeL values the
error margin was large because of the small number of
samples over which the average was obtained. Calculation of
w(L,t) was facilitated by the use of built-in functionSTDEV
~standard deviation! in Excel.

In Fig. 3 we showw(L,t) as s function of time t for
selected values ofL with L5200, 300, 400, 500, 700, 1000,
1300, 1600, 1800, 2000, and 2200. Each curve represents a
smooth joining of experimental points. The figure shows two
unexpected features of fluid flow through a porous medium
at the beginning~t,30 s! and at the end~t.2500 s!. For
t,30 s,w(L,t) shows an irregular behavior, indicating the
transient nature of the fluid flow. This was unexpected but
understandable. The behavior is similar to the behavior of an
underdamped oscillator. Since the flow velocity is propor-
tional to the porosity@26#, and because the porosity of the
paper towel is large, and also because of the closeness of the
interface to the fluid reservoir, the fluid initially rushed for-
ward, but because of a lack of damping due to the thinness of
the paper towel, the relaxation of the fluid flow is not criti-
cally damped but rather underdamped. A similar behavior
was observed in the relaxation of spin-spin correlations@27#.
For the time interval 30 and 2500 sw(L,t) shows a linear
behavior in time, reflecting a steady laminar fluid flow. As
the interface nears the maximum height, the fluid flow slows
down because of the increased distance from the reservoir or
a decrease in the pressure gradient due to capillary action.
After reaching a saturation valuew(L) near 2500 s, the in-

FIG. 2. Log10̂ h& is plotted as a function of log10t for the system
sizeL52400 digitized points representing length of 240 mm. The
slope of the linear curve was found to be 0.3360.02.

FIG. 3. The interface widthw(L,t) is shown as a function of
time t for selected values ofL. Starting from the bottom,L5200,
300, 400, 500, 700, 1000, 1300, 1600, 1800, 2000, and 2200. Each
curve represents smooth joining of experimental points.
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terface width begins to decrease, instead of remaining con-
stant as expected from theoretical models~see, for instance,
Fig. 2.3, p. 22, Ref.@2#, or Fig. 3.2, p.77, Ref.@3#!. This
behavior may be peculiar to the paper-towel-wetting experi-
ment. In paper towel wetting the roughness reaches a maxi-
mum value while the paper is still wet. After that, details of
the roughness begin to erode slowly, smoothing out the
roughness in the interface. In other growth models we have
no reason to expect that the width will peak at a certain time
t and then decrease, so thatw(L,t).w(L,t→`). In our
experimentw(L)5w(L,t), with t'2500 s.

We took these peak values ofw(L,t) shown in Fig. 3 as
the saturation valuew(L), and plotted log10w(L) as a func-
tion of log10L, as shown in Fig. 4. The slope of the initial
portion indicates thata50.6760.04. This value agrees well
with the value obtained by Family, Chan, and Amar@20#,
~see Table I!. It is also in accord with the prediction of the
DPD simulation in the moving phase@15–17#. It is interest-
ing to note that, in our experiment, after the interface has
reached the maximum height, the saturated widthw(L) did
not remain constant as expected from theoretical model stud-
ies. Instead, the widthw(L) began to decrease, though
slowly. This, we believe, is due to the fact that details of the
roughness erode as the red food dye smears out in the neigh-
borhood region. Therefore, we believe that the peak values
of the width shown in Fig. 3 should be taken as saturated
values of the widthw(L). If we waited until the paper was
completely dry and interface reached a pinned phase before
we digitized it, many of the details of structures in the inter-
face would have been lost. In a way our result may be
viewed as consistent with the result of Barabasiet al. @15#, in
that they obtaineda50.63 for the pinned phase in their ex-
periment as well as in their DPD model simulation, but
a50.70 for the moving phase in their DPD model simulation
~see Table I for details!.

To determine the growth exponentb, we first plotted
w(L,t) as shown in Fig. 5 using discrete experimental
points, without joining them with smooth lines as was done
in Fig. 3, for the purpose of showing some of the details in

FIG. 6. Scaled width is shown as a function of scaled time using
a regular scale in~a!, and using a log-log scale in~b!. It is seen in
both of these graphs that those scattered points in Fig. 5 collapse
into a single line indicating scaling behavior.

FIG. 4. Log10w(L) is plotted as a function of log10L. For the
short length region the slope indicatesa50.67, and for the large
length region the slope is 0.19. FIG. 5. The interface widthw(L,t) is shown as a function of

time t for selected values ofL using discrete experimental points
without joining them with smooth lines.
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the early time region~t,30 s!. Next we plotted the scaled
width w(L,t)/La as a function of the scaled timet/Lz for
each selected value ofL, using the regular scale in Fig. 6~a!,
and using the log-log scale in Fig. 6~b!. To do this we had to
assume a value forb; to begin with we setb50.333. We
displayed both of these graphs in the window screen, and
gradually variedb until those scattered points, as shown in
Fig. 5, collapsed into a single line as shown in Fig. 6~a!, and
into a single straight line shown in Fig. 6~b!. Inasmuch as
many points fell on top of one another in Fig. 6, no effort
was made to distinguish those points belonging to differentL
values as was done in Fig. 5. The optimum value thus arrived
at isb50.2460.02. This value was confirmed by calculating
the average of slopes obtained in 11 differentL values. That
is, we calculated the slope in each log10[w(L,t)/L

a] vs
log10(t/L

z) curve for 11 differentL values, and an average of
the slopes was obtained. We believe that this method of de-
termining b is new and original. Our value ofb50.24 is
close to the value of 0.25 predicted by the Lengevin equation
~EW! @11,12#. Our value is slightly lower than the values,
0.29–0.40, obtained by Family, Chan, and Amar@20#. Nei-
ther our value,b50.2460.02, nor the value of Family, Chan,
and Amar @20#, 0.29<b<0.40, agree with the simulation
value predicted by the DPD model of Barabasi and co-
workers@15–17#, b50.7060.05. It is interesting to note that
a recent value ofb50.5660.03 obtained by Horvath and
Stanley@24# in a paper-wetting experiment is also lower than
the DPD simulation value.

The scaling behavior we observed in our experiment is
valid for a limited time interval and spatial range. The time
interval in which the scaling behavior is observed in our
experiment is 30 and 2500 s. This time interval is wider than
the time interval in which Family, Chan, and Amar@20#
observed their scaling behavior~615 and 1985 s! ~see Fig. 5

of Ref. @20#!. The spatial extent over which scaling is ob-
served is 2 and 22 cm or 200 and 2200 in digitized points.
This appears to be quite reasonable, in that for a length less
than 2 cm or 200 digitized points a consistent statistical be-
havior may not be expected.

Family, Chan, and Amar@20# briefly discussed the possi-
bility of crossover in the scaling behavior of the interfacial
width. At a larger length scale a different scaling behavior
may be expected, possibly due to the existence of a charac-
teristic length scale at a later time~see Fig. 5 of Ref.@20#!.
Buldyrevet al. @16# went a step further to determinea50.73
in region I, whereji,L, anda50.5 in region II, whereji.L
~see Fig. 5 of Ref.@16#!. We have also found two distinct
regions, as shown in Fig. 4. In the short-L region we found
a50.67, and in the longerL region we founda50.19. We
went a step further. We searched for but failed to find an-
other value ofb which, when paired witha50.19, will scale
the interface width.

Through a simple experiment that does not require sophis-
ticated equipment, it has been possible to study the dynamic
scaling behavior of a growing self-affine fractal interface.
We find that the interface width scales with timet and with
system sizeL. We also find that the average interface height
scales with time. However, the scaling behavior is valid only
over a limited time and space. The dynamic scaling ap-
proach, nevertheless, is a useful means of describing fluctu-
ating far-from-equilibrium phenomena, which cannot be de-
scribed in terms of a standard formalism in equilibrium
statistical mechanics.
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